Graph depicting measurements

Graph depicting measurements

Graphic depicting measurements

Instruments aboard three NASA missions -- including the Swift satellite, which is controlled by Penn State -- and the ground-based RAPTOR telescope provide the most detailed multi-energy look at changing emissions of one of the brightest gamma-ray explosions ever seen. The early pulse of gamma rays from this object, named GRB 130427A, was detected by the Fermi satellite and had behaviors that confounded all models for explaining the emission based on colliding shells of matter. Visible light measured by RAPTOR closely tracks the high-energy gamma rays detected by Fermi, which is an unexpected relationship. Data from Swift's X-ray and ultraviolet-detecting instruments, in concert with measurements from ground telescopes, capture the evolution of the gamma-ray burst over weeks and show that it shares properties with much more distant bursts. Observations by the NuSTAR and Fermi observatories challenge a 12-year-old prediction of how the emission components in a GRB spectrum should change with time. The ground-based measurements shown here come from the Faulkes Telescope North, located at Haleakala Observatory in Hawaii, the Liverpool Telescope on the island of La Palma, Spain, and the MITSuME Telescopes in Japan. For clarity, this chart omits error bars for all measurements.

Image: NASA Goddard Space Flight Center
Licensing and Use